Three-Dimensional Quantitative Structure-Property Relationship (3D-QSPR) Models for Prediction of Thermodynamic Properties of Polychlorinated Biphenyls (PCBs): Enthalpy of Vaporization

نویسندگان

  • Swati Puri
  • James S. Chickos
  • William J. Welsh
چکیده

Three-dimensional quantitative structure--property relationship (3D-QSPR) models have been constructed using comparative molecular field analysis (CoMFA) to correlate the sublimation enthalpies at 298.15 K of a series of polychlorinated biphenyls (PCBs) with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as atom fit, as is, and inertial were employed in this study. Separate CoMFA models were developed using different partial charge formalisms, namely, electrostatic potential (ESP) and Gasteiger-Marsili (GM) charges. Among the four different CoMFA models constructed for sublimation enthalpy (Delta(sub)H(m)(298.15 K)), the model that combined atom fit alignment and ESP charges yielded the greatest self-consistency (r(2) = 0.976) and internal predictive ability (r(cv)(2) = 0.750). This CoMFA model was used to predict Delta(sub)H(m)(298.15 K) of PCBs for which the corresponding experimental values are unavailable in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Dimensional Quantitative Structure-Property Relationship (3D-QSPR) Models for Prediction of Thermodynamic Properties of Polychlorinated Biphenyls (PCBs): Enthalpies of Fusion and Their Application to Estimates of Enthalpies of Sublimation and Aqueous Solubilities

Comparative Molecular Field Analysis (CoMFA) has been used to develop three-dimensional quantitative structure-property relationship (3D-QSPR) models for the fusion enthalpy at the melting point (Delta(fus)H(m)(T(fus))) of a representative set of polychlorinated biphenyls (PCBs). Various alignment schemes, such as inertial, as is, atom fit, and field fit, were used in this study to evaluate the...

متن کامل

QSPR models to predict thermodynamic properties of some mono and polycyclic aromatic hydrocarbons (PAHs) using GA-MLR

Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting thermodynamic properties such as the enthalpy of vaporization at standard condition (ΔH˚vap kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated into 2 groups: training and test sets. A set o...

متن کامل

QSPR Analysis with Curvilinear Regression Modeling and Topological Indices

Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...

متن کامل

Relationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR

Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. One of the useful indic...

متن کامل

QSPR prediction of n-octanol/water partition coefficient for polychlorinated biphenyls.

The logarithmic n-octanol/water partition coefficient (logK(ow)) is a very important property which concerns water-solubility, bioconcentration factor, toxicity and soil absorption coefficient of organic compounds. Quantitative structure-property relationship (QSPR) model for logK(ow) of 133 polychlorinated biphenyls (PCBs) is analyzed using heuristic method (HM) implemented in CODESSA. In orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2002